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We propose an all-linear-optical scheme to ballistically generate a cluster state for measurement-based
topological fault-tolerant quantum computation using hybrid photonic qubits entangled in a continuous-
discrete domain. Availability of near-deterministic Bell-state measurements on hybrid qubits is exploited
for this purpose. In the presence of photon losses, we show that our scheme leads to a significant
enhancement in both tolerable photon-loss rate and resource overheads. More specifically, we report a
photon-loss threshold of ∼3.3 × 10−3, which is higher than those of known optical schemes under a
reasonable error model. Furthermore, resource overheads to achieve logical error rate of 10−6ð10−15Þ is
estimated to be ∼8.5 × 105ð1.7 × 107Þ, which is significantly less by multiple orders of magnitude
compared to other reported values in the literature.
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Errors during quantum information processing are
unavoidable, and they are a major obstacle against practical
implementations of quantum computation (QC) [1].
Quantum error correction (QEC) [2] permits scalable QC
with faulty qubits and gates provided the noise is below a
certain threshold. The noise threshold is determined by the
details of the implementing scheme and the noise model.
Measurement-based topological fault-tolerant (FT) QC

[3] on a cluster state provides a high error threshold of
0.75% against computational errors [4,5]. Additionally, it
can tolerate qubit losses [6,7] and missing edges [8]; thus, it
would be suitable for practical large-scale QC. However,
there is a trade-off between the tolerable computational
error rate, and the tolerable level of qubit losses and missing
edges. A cluster state jCi, over a collection of qubits
C, is the state stabilized by operators Xa ⊗b∈nhðaÞ Zb,
where a; b ∈ C, Zi and Xi are the Pauli operators on
the ith qubit, and nh(a) represents the adjacent neighbor-
hood of qubit a ∈ C [9]. It has the form:
jCi ¼ Q

b∈nhðaÞ CZa;bjþiajþib; ∀ a ∈ C, where CZ is the

controlled-Z gate, j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
, and fj0i; j1ig are

eigenstates of Z. Here, we consider the Raussendorf
cluster state jCLi [3] on a cubic lattice L with qubits
mounted on its faces and edges.
The linear optical platform has the advantage of quick

gate operations compared to their decoherence time [10].
Unfortunately, schemes based on discrete variables (DV)
like photon polarizations suffer from the drawback that the
entangling operations (EOs), typically implemented by
Bell-state measurements, are nondeterministic [11]. This
leaves the edges corresponding to all failed EOs missing,
and beyond a certain failure rate the cluster state cannot

support QC. References [8,12–15] tackle this shortcoming
with a repeat-until-success strategy. However, this strategy
incurs heavy resource overheads in terms of both qubits and
EO trials, and the overheads grow exponentially as the
success rate of EO falls [8]. Moreover, conditioned on the
outcome of the EO, all other redundant qubits must be
removed via measurements [14] which would add to
undesirable resource overheads. These schemes also
require active switching to select successful outcomes of
EOs and feed them to the next stage, which is known to
have an adverse effect on the photon-loss threshold for
FTQC [16]. DV-based optical EOs have a success rate of
50% that can be further boosted with additional
resources like single photons [17], Bell states [18], and
the squeezing operation [19]. Reference [20] uses EOs
with a boosted success rate of 75% to build cluster
states. This can be further enhanced by allotting more
resources. Coherent-state qubits, composed of coherent
states j � αi of amplitudes �α, enable one to perform
nearly deterministic Bell-state measurements and universal
QC using linear optics [21,22], while this approach is
generally more vulnerable to losses [10,23]. Along this
line, a scheme to generate cluster states for topological QC
was suggested, but the value of α required to build a cluster
state of sufficiently high fidelity is unrealistically large as
α > 20 [24]. A hybrid qubit using both DVand continuous-
variable (CV) states of light, i.e., polarized single photons
and coherent states was introduced to take advantages of
both the approaches [25].
We propose an all-linear-optical, measurement-based FT

hybrid topological QC (HTQC) scheme on jCLi of hybrid
qubits. The logical basis for a hybrid qubit is defined as
fjαijHi≡ j0Li; j − αijVi≡ j1Lig, where jHi and jVi are
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single-photon states with horizontal and vertical polar-
izations in the Z direction. The issues with indeterminism
of EOs on DVs [8,13–15] and poor fidelity of the cluster
states with CVs [24] are then overcome. Crucial to our
scheme is a near-deterministic hybrid Bell-state measure-
ment (HBSM) on hybrid qubits using two photon number
parity detectors (PNPDs) and two on-off photodetectors
(PDs), which is distinct from the previous version that
requires two additional PDs to complete a teleportation
protocol [25]. We only need HBSMs acting on three-
hybrid-qubit cluster states to generate jCLi without any
active switching and feed forward. The outcomes of
HBSMs are noted to interpret the measurement results
during QEC and QC. In this sense, our scheme is ballistic
in nature. Both CVand DV modes of hybrid qubits support
the HBSMs to build jCLi, while only DV modes suffice
for QEC and QC. This means that only on-off PDs for DV
modes are required once jCLi is generated. In addition,
photon loss is ubiquitous [10], which causes dephasing
such as in [23,25,26]. We analyze the performance of our
scheme against photon losses and compare it with the
known all-optical schemes.
Physical platform for jCLi.—To ballistically build a jCLi,

we begin with hybrid qubits, in the form ðjHijαi þ
jvij − αiÞ= ffiffiffi

2
p ¼ ðj0Li þ j1LiÞ=

ffiffiffi
2

p ≡ jþLi, as raw resour-
ces of our scheme. In fact, this type of hybrid qubits and
with slight variant forms (with the vacuum and single
photon instead of jHi and jVi) were generated in recent
experiments [27–29], which can also be used for QC in the
same way as in [25] even with higher fidelities and success
probabilities of teleportation [30]. A hybrid qubit can also
be generated using a Bell-type photon pair, a coherent-state
superposition, linear optical elements and four PDs [31].
The HBSM introduced in this Letter consists of two

types of measurements, Bα and Bs, acting on CV and DV
modes, respectively. A Bell-state measurement for coher-
ent-state qubits [32], Bα, comprises of a beam splitter (BS)
and two PNPDs, whereas Bs has a polarizing BS (PBS) and
two PDs as shown in Fig. 1(a). The failure rate for an
HBSM turns out to be pf ¼ e−2α

2

=2 (see the Supplemental
Material [33] and also [25]) that rapidly approaches zero
with growing α. The first and only nondeterministic step of
our protocol is to prepare two kinds of three-hybrid-qubit
cluster states,

jC3iabc ¼
1

2
ðj0Liaj0Libj0Lic þ j0Liaj0Libj1Lic

þ j1Liaj1Libj0Lic − j1Liaj1Libj1LicÞ;

jC30 iabc ¼
1
ffiffiffi
2

p ðj0Liaj0Libj0Lic þ j1Liaj1Libj1LicÞ; ð1Þ

using four hybrid qubits, two Bαs and a BI [33]. (Here, BI is
a type-I fusion gate using two PBSs, two PDs and a π=2
rotator, of which the success probability is 1=2. See the
Supplemental Material for details [33].) As shown in

Fig. 1(b), an HBSM is performed on modes 2 and 4 of
jC3i123 and jC30 i456, and the other HBSM is performed
similarly between jC30 i456 and jC3i789, which produces a
star cluster, jC�i, with a high success probability.
Simultaneously, the star clusters are connected using
HBSMs to form layers of jCLi as depicted in Fig. 2(b).
As the third dimension of jCLi is time simulated, in practice
only two physical layers suffice for QC [4].
Notably, different outcomes of HBSMs and failures

during this process can be compensated during QEC as
explained below. As HBSMs have four possible outcomes
from Bα, the built cluster state is equivalent to jCLi up to
local Pauli operations. This can be compensated by
accordingly making bit flips to the measurement out-
comes during QEC. This is achieved by classical process-
ing and no additional quantum resources are required. As
shown in Fig. 1(b), failure(s) of HBSMs result(s) in a
deformed star cluster with diagonal edge(s) instead of four
proper edges stretching from the central qubit. The final
cluster state jCLi inherits these diagonal edges as shown
in Fig. 2(c) with a disturbed stabilizer structure. However,
failures of HBSMs are heralded, which reveals the
locations of such diagonal edges. These diagonal edges
can be removed by adaptively measuring the hybrid qubits
in a Z basis (MZ), as shown in Fig. 2(c), restoring back
the stabilizer structure of jCLi. Failure of HBSMs for

(a)

(b)

FIG. 1. (a) Bα acts on CV modes and fails when neither of the
two PNPDs click. The failure rate of a Bα on the hybrid qubits is
e−2α

2

. Bs acts on DV modes and is successful with probability
1=2 only when both the PDs click. (b) The three-hybrid-qubit
cluster with one unfilled circle represents jC3i, while that with
two represents jC30 i in Eq. (1). An unfilled circle means a
difference by a Hadamard transform from the original three-
qubit cluster (see the Supplemental Material [33]). Success of
both HBSMs creates a star cluster jC�i and other cases lead to
distorted star clusters as shown.
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connecting jC�is simply leaves the edges missing, as
shown in Fig. 2(a), without distorting the stabilizer
structure.
Noise model.—Let η be the photon-loss rate due to

imperfect sources and detectors, absorptive optical com-
ponents and storages. In HTQC, the effect of photon loss is
threefold (see the Supplemental Material [33] and also
[25]) that (i) causes dephasing of hybrid qubits, i.e., phase-
flip errors Z, a form of computational error, with rate
pZ ¼ ½1 − ð1 − ηÞe−2ηα2 �=2, (ii) lowers the success rate of
HBSM, and (iii) makes hybrid qubits leak out of the logical
basis. Quantitatively, pf increases to ð1þ ηÞe−2α02=2,
where α0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − η
p

α. Thus, for a given η and growing α
we face a trade-off between the desirable success rate of
HBSM and the detrimental dephasing rate pZ.
Further, like the type-II fusion gate in [34], Bs does not

introduce computational errors during photon loss [33].
However, the action of Bα on the lossy hybrid qubits
introduces additional dephasing as shown in the
Supplemental Material [33]. To clarify, like DV schemes
[15], photon loss does not imply hybrid-qubit loss. In
many FTQC schemes η has a typical operational value of
∼10−3 (on the higher side) [13,26,35,36], i.e., η ≪ 1. The
probability of hybrid-qubit loss due to photon loss, ηe−α

02

(the overlap between a lossy hybrid qubit and the
vacuum), is then very small compared to pf and negligible
to HTQC.

Measurement-based HTQC.—Once the faulty cluster
state is built with missing and diagonal edges, and
phase-flip errors on the constituent hybrid qubits, meas-
urement-based HTQC is performed by making sequential
single-qubit measurements in X and Z bases. A few chosen
ones are measured on a Z basis to create defects, and the
rest are measured on a X basis for error syndromes during
QEC and for effecting the Clifford gates on the logical
states of jCLi. For magic state distillation, measurements
are made on a ðX � YÞ= ffiffiffi

2
p

basis [3–5]. All these mea-
surements are accomplished by measuring only polariza-
tions of DV modes in their respective bases. These
measurement outcomes should be interpreted with respect
to the recorded HBSM outcomes as mentioned earlier.
Simulations.—Simulations of topological QEC are per-

formed using AUTOTUNE [37] (see Sec. IV of the
Supplemental Material [33]). Only the central hybrid qubit
of jC�i remains in the cluster and the rest are utilized by
HBSMs. The jC�is are arranged as shown in Fig. 2. Next,
all hybrid qubits are subjected to dephasing of rate pZ
following which EOs are performed using HBSMs. The
action of Bα in HBSM dephases the adjacent remaining
hybrid qubits, which can be modeled as applying fZ ⊗
I; I ⊗ Zg with rate pZ. Section III of the Supplemental
Material [33] presents technical details. This concludes the
simulation of building noisy jCLi. Further, the hybrid qubits
waiting to undergo measurements as a part of QEC attract
dephasing, and rate pZ again is assigned. During QEC,
X-measurement outcomes used for syndrome extraction
could be erroneous. This error too is assigned rate pZ. Due
to photon losses, the hybrid qubits leak out of the logical
basis failing the measurements on DV modes. This leakage
is also assigned pZ, which only overestimates η.
One missing edge due to failed HBSMs can be mapped

to two missing hybrid qubits [8]. Improving on this, by
adaptively performing MZ [Fig. 2(c)] on one of the hybrid
qubits associated with a missing edge, this edge can be
modeled with a missing qubit [38]. Then, QEC is carried
out as in the case of missing qubits [6]. In constructing
jCLi, an equal number of HBSMs are required for building
jC�i and for connecting them. A failure of an HBSM during
the former process corresponds to two hybrid-qubit losses,
and the latter case to one [Fig. 2(c)]. Therefore, on average
1.5 hybrid qubits per HBSM failure are lost. Percolation
threshold for jCLi is a 0.249 fraction of missing qubits
[6,39,40], which corresponds to α ≈ 0.7425 (when no
computational error is tolerated, i.e., η ¼ 0), the critical
value of α below which HTQC becomes impossible.
Results.—The logical error rate pL (failure rate of

topological QEC [4]) was determined against various
values of pZ for jCLi of code distances d ¼ 3, 5, 7. This
was repeated for various values of pf, which correspond to
different values of α. Figure 3(a) shows the simulation
results for αopt ¼ 1.247 in which the intersection point of
the curves corresponds to the threshold dephasing rate

:
:

(a)

(b)

(c)

FIG. 2. (a) When connecting jC�is, a successful HBSM creates
an edge between hybrid qubits whereas a failed HBSM leaves the
edge missing. (b) 3D illustration of building two layers of jCLi for
practical HTQC with jC�is and HBSMs to connect them. (c) A
diagonal edge is created due to failure of an HBSM correspond-
ing to jC�i, and a missing edge is due to failure of an HBSMwhile
connecting them. A single layer of jCLi is shown for convenience,
and Mz is measurement on a Z basis.
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pZ;th. The photon-loss threshold ηth is determined using the
expression for pZ.
Figure 3(b) shows the behavior of ηth with α. Owing to

the trade-off between pf and pZ, the optimal value for
HTQC is αopt ≈ 1.25which corresponds to ηth ≈ 3.3 × 10−3

and pZ;th ≈ 6.9 × 10−3. The value of ηth for 0.8 ≤ α ≤ 2 is
on the order of 10−3, which is an order greater than the non-
topological hybrid-qubit-based QC (HQQC) [25] and
coherent state QC (CSQC) [23]. HTQC also outperforms
the DV based topological photonic QC (TPQC) with ηth ≈
5.5 × 10−4 [15]. Multiphoton qubit QC (MQQC) [26],
parity state linear optical QC (PLOQC) [35] and error-
detecting, quantum state transfer based QC (EDQC) [36]
provide ηths, which are less than HTQC but of the same
order as illustrated in Fig. 4(a). In addition, η and the
computational error rates are independent in [13,35,36],
while these two quantities are related in our scheme and
Refs. [23,25,26]. Also in the former schemes the computa-
tional error is dephasing in nature, and in the latter schemes
it is depolarizing. In fact, ηths claimed by optical cluster-
state QC (OCQC) [13], PLOQC, EDQC, and TPQC are
valid only for zero computational error. This is unrealistic
because photon losses typically cause computational errors.
For the computational error rate as low as 8 × 10−5, ηth ¼ 0
in OCQC. Thus, for nonzero computational errors, HTQC
also outperforms OCQC due to its topological nature
of QEC.
To estimate the resource overhead per gate operation, we

count the average number of hybrid qubits N required to
build jCLi of a sufficiently large side length l, where the
desired value of l depends on the target pL. The length l is
determined such that jCLi can accommodate defects of
circumference d which are separated by distance d [7].
For this, the length of sides must be at least l ¼ 5d=4.

Extrapolating the suppression of pL with code distance, we
determine the value of d required to achieve the target pL

using the expression pL ¼ a0=½ða=a0Þðd−da0 Þ=2� [7], where a
and a0 are values of pL corresponding to the second highest
and the highest distances, da and da0 , chosen for simulation.
Once d is determined, N can be estimated as follows.
Recall that two jC3is and a jC30 i are needed to build a jC�i.
On average, 8=½ð1 − e−2α

02Þ2� hybrid qubits are needed
to create a three-hybrid-qubit cluster (see Sec. III of
the Supplemental Material [33]) and a total of 24=
½ð1 − e−2α

02Þ2� hybrid qubits for a jC�i. Each jC�i corre-
sponds to a single hybird qubit in the jCLi and thus the
number of jC�is needed is 6l3. Finally, on average,
1125d3=½4ð1 − e−2α

02Þ2� hybrid qubits are incurred. For
the optimal value of αopt ≈ 1.25, from Fig. 3(a) we have
a ≈ 4.4 × 10−4, a0 ≈ 7.9 × 10−5, and da0 ¼ 9; using these
in the expression for pL we find that d ≈ 14ð38Þ is needed
to achieve pL ∼ 10−6ð10−15Þ. This incurs N ≈ 8.5 ×
105ð1.7 × 107Þ hybrid qubits.
Comparisons in Fig. 4(b) and in the Supplemental

Material [33] show that HTQC incurs resources signifi-
cantly less than all the other schemes under consideration.
As an example, for the case of TPQC, we find that a ¼
0.065 and a0 ¼ 0.059 from Fig. 7(a) of [15], where the
figure considers only computational errors. Thus, TPQC
under computational errors needs d ¼ 225ð621Þ to attain
pL ∼ 10−6ð10−15Þ. Since a qubit in TPQC needs 2Rþ 1
photons on average as resources [15], we obtain N ¼
ð2Rþ 1Þ × 6ð5d=4Þ3 [33], where R ¼ 7 for maximum ηth
[15]. We then find N ¼ 2 × 109 ð4.2 × 1010Þ for TPQC,

FIG. 3. (a) Logical error rate pL is plotted against the dephasing
rate pZ for coherent-state amplitude αopt ¼ 1.247 and code
distances d ¼ 3, 5, 7. The intersecting point of these curves
corresponds to the threshold dephasing rate pZ;th. (b) The
tolerable photon-loss rate ηth is plotted against coherent-state
amplitude α. The behavior of the curve is due to the trade-off
between the success rate of HBSM and dephasing rate pZ with
growing α. As we increase α, both the success rate and pZ
increase; but the former dominates and leads to an increase in ηth.
When α > 1.247, pZ dominates and causes ηth to decrease.
Compared to the nontopological HQQC [25], HTQC has an order
of higher value for ηth.

FIG. 4. (a) Optimal photon-loss threshold ηth for various QC
schemes. It should be noted that ηths of OCQC, PLOQC, EDQC,
and TPQC (dashed borders) are valid only for zero computational
error, which is physically unachievable. Other schemes evaluate
optimal ηth at nonzero computational errors naturally related to η.
(b) Resource overhead N to achieve logical error rate pL ∼
10−6ðblue shorter barsÞ and pL ∼ 10−15ðorange taller barsÞ in
terms of the average numbers of hybrid qubits (HTQC), en-
tangled photon pairs (OCQC and EDQC), coherent-state super-
positions (CSQC) from our analysis and published data in
[13,23,36]. For CSQC data only for pL ∼ 10−6 is available [23].
Obviously, HTQC is practically favorable for large scale QC both
in terms of ηth and N. See the Supplemental Material [33] for
more details of comparisons.
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and it must be even larger when qubit losses are considered
together with computational errors [33].
Discussion.—Our proposal permits the construction of

cluster states with very few missing edges that sub-
sequently support QEC and QC only with photon on-off
measurements. We simulated its performance and found
that our scheme is significantly more efficient than other
known schemes in terms of both resource overheads and
photon-loss thresholds (Fig. 4), especially when exceed-
ingly small logical error rates are desired for large-scale
QC. We have considered measurements only on DV modes
of hybrid qubits for QEC. However, measurements on CV
modes can also be used, which will significantly reduce
leakage errors and improve the photon-loss threshold. The
scheme requires hybrid qubits of α ≈

ffiffiffi
2

p
× 1.25 as raw

resource states, which can in principle be generated using
available optical sources, linear optics, and photodetectors
[28,29,31].
One may examine other decoders tailored to take

advantage of dephasing noise, such as in [41] instead of
the minimum weight perfect match [42], for improvement
of the photon-loss threshold. Different single-qubit noise
models [43] may be considered to study the performance of
HTQC. A sideline task would be in situ noise characteri-
zation using the available syndrome data [44–47]. The
procedure proposed here to build complex hybrid clusters
can also be used to build lattices of other geometries for QC
[20,48,49] and other tasks such as communication [50].
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